Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
1.
Front Microbiol ; 15: 1367062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572235

RESUMO

The Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM). The CW mass harbors the highest alpha diversity across all layers, whereas the NM mass exhibits higher diversity in the surface layer but lower in the middle layers. Proteobacteria was the most abundant taxa in all water masses, apart from that, in the surface layer masses, Cyanobacterium, Bacteroidota, and Actinobacteriota were the highest proportion in CW, while Bacteroidota and Actinobacteriota were the highest proportion in NM and BS; in the middle layer, Bacteroidota and Actinobacteriota were dominant phylum in CW and BS masses, but Cyanobacterium was main phylum in NM mass; in the bottom layer, Bacteroidota and Actinobacteriota were the dominant phylum in CW, while Marininimicrobia was the dominated phylum in DM and MM masses. Network analysis suggests water masses have obvious influence on community topological characteristics, moreover, community assembly across masses also differ greatly. Taken together, these results emphasized the significant impact of water masses on the bacterial composition, topological characteristics and assembly process, which may provide a theoretical foundation for predicting alterations in microbial communities within estuarine ecosystems under the influence of water masses.

2.
Mar Pollut Bull ; 202: 116308, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574503

RESUMO

The distribution of polycyclic aromatic hydrocarbons (PAHs) and halogenated PAHs (HPAHs) in surface soils from the petroleum industrial area of the Yellow River Delta (YRD) in China were investigated. The total concentrations of 16 PAHs ranged from 19.6 to 1560 ng/g, while 22 HPAHs ranged from 2.44 to 14.9 ng/g. Moreover, a high degree of spatial distribution heterogeneity was observed for both PAHs and HPAHs, which is likely attributed to the distinct industrial activities in studied area. The combustion of biomass and petroleum were identified as primary sources of soil PAHs and HPAHs in the YRD. Furthermore, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[g,h,i]perylene exhibited high ecological risks (with risk quotients of 1.47, 1.44, and 1.02, respectively) in specific sites within the YRD. Considering the high toxicity of HPAHs and their potential joint environmental effects with PAHs, continuous attention should be directed towards the environmental risks associated with both PAHs and HPAHs.

3.
Mar Pollut Bull ; 202: 116331, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38598928

RESUMO

This study investigates the sedimentation behaviors of microplastics (MPs) within a typical meso-scale river estuary, the Yalu River Estuary (YRE) and its riverine reservoir. It analyzes sediment cores in two habitats of Yalu River, revealing changing MPs abundance over time. Results highlight significant differences in riverine and estuarine MPs deposition. Reservoir sample contains more MPs in fragments. Color variations are notable in estuarine samples but minimal in reservoir sample. After 1980, estuarine cores show an increase in coarser MPs, likely due to growth of aquaculture activities. Although sediment accumulates at 1/10 of the rate in reservoir compared to estuary, MPs in reservoir sediments exceeds estuarine level by over threefold. A possible mechanistic framework is then proposed to discuss the varying MPs behaviors in the two habitats, indicating reservoirs accumulate MPs at a higher rate due to the barrier effect of an upper-stream reservoir, stable hydrodynamics, and weak salinity-induced buoyancy.

4.
J Environ Manage ; 358: 120817, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593740

RESUMO

Spartina alterniflora invasion is considered a critical event affecting sediment phosphorus (P) availability and stock. However, P retention and microbial phosphate solubilization in the sediments invaded with or without S. alterniflora have not been fully investigated. In this study, a sequential fractionation method and high-throughput sequencing were used to analyze P transformation and the underlying microbial mechanisms in the sediments of no plant (NP) zone, transition (T) zone, and plant (P) zone. Results showed that except for organic phosphate (OP), total phosphate (TP), inorganic phosphate (IP), and available phosphate (AP) all followed a significant decrease trend from the NP site to the T site, and to the P site. The vertical decrease of TP, IP, and AP was also observed with an increase in soil depth. Among the six IP fractions, Fe-P, Oc-P, and Ca10-P were the predominant forms, while the presence of S. alterniflora resulted in an obvious P depletion except for Ca8-P and Al-P. Although S. alterniflora invasion did not significantly alter the alpha diversity of phosphate-solubilizing bacteria (PSB) harboring phoD gene, several PSB belonging to p_Proteobacteria, p_Planctomycetes, and p_Cyanobacteriota showed close correlations with P speciation and IP fractions. Further correlation analysis revealed that the reduced soil pH, soil TN and soil EC, and the increased soil TOC mediated by the invasion of S. alterniflora also significantly correlated to these PSB. Overall, this study elucidates the linkage between PSB and P speciation and provides new insights into understanding P retention and microbial P transformation in the coastal sediment invaded by S. alterniflora.

5.
Mar Pollut Bull ; 202: 116357, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643587

RESUMO

This study aims to explore microplastic contamination in the sediments of Benoa Bay. Eight locations were sampled, with four duplications denoting the rainy and dry seasons. Based on observations, the microplastic concentration varied from 9.51 to 90.60 particles/kg with an average of 31.08 ± 21.53 particles/kg. The area near the landfill had the highest abundance, while the inlet and center of Benoa Bay and the Sama River had the lowest concentration. The fragments (52.2 %) and large microplastic sizes (64.7 %) were the most documented particles. We also identified 17 polymers, which dominated (37.5 %) by polyethylene, polypropylene, and polystyrene. There were no appreciable variations in abundance between seasons, although there were substantial variations in shape and size. Comprehensive investigation, adequate policies, continuous monitoring, and reducing waste from land- and sea-based sources that engage various stakeholders must be implemented urgently to prevent the release of microplastic into the aquatic ecosystem.

6.
Sci Total Environ ; 928: 172321, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604373

RESUMO

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

7.
Data Brief ; 54: 110368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623552

RESUMO

Atlantic bottlenose dolphins are extensively studied, though little has been published regarding their occurrence patterns in the large and highly urbanized estuary of the Chesapeake Bay, USA. To address this knowledge gap, the Chesapeake DolphinWatch project was initiated in the summer of 2017. Utilizing a citizen science (also known as volunteer science) methodology, members of the public were encouraged to report dolphin sightings through a specialized mobile (iOS and Android) and web-based (https://chesapeakedolphinwatch.org) application. This approach ensured extensive, yet non-invasive and financially-efficient, data collection. The dataset presented here includes bottlenose dolphin sighting reports submitted to Chesapeake DolphinWatch by citizen scientists over five years; from June 28, 2017 through December 9, 2022. These data have been quality checked by researchers at the University of Maryland Center for Environmental Science's (UMCES) Chesapeake Biological Laboratory (CBL) in Solomons, Maryland (USA). This dataset holds potential for various applications, such as analyzing the spatiotemporal patterns of dolphin presence within the Chesapeake Bay, investigating the behavior and movements of bottlenose dolphins in the mid-Atlantic, and serving as a comparative benchmark for studies in other estuarine systems. By integrating community engagement with technological platforms, the provided data showcases the invaluable role of citizen science in advancing marine ecological research.

8.
Sci Total Environ ; 927: 172094, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575036

RESUMO

Mangrove estuaries are an important land-sea transitional ecosystem that is currently under various pollution pressures, while there is a lack of research on per- and polyfluoroalkyl substances (PFAS) in the organisms of mangrove estuaries. In this study, we investigated the distribution and seasonal variation of PFAS in the tissues of organisms from a mangrove estuary. The PFAS concentrations in fish tissues varied from 0.45 ng/g ww to 17.67 ng/g ww and followed the order of viscera > head > carcass > muscle, with the highest tissue burden found in the fish carcass (39.59 ng). The log BAF values of PFDoDA, PFUnDA, and PFDA in the whole fish exceeded 3.70, indicating significant bioaccumulation. The trophic transfer of PFAS in the mangrove estuary food web showed a dilution effect, which was mainly influenced by the spatial heterogeneity of PFAS distribution in the estuarine environment, and demonstrated that the gradient dilution of PFAS in the estuary habitat environment can disguise the PFAS bio-magnification in estuarine organisms, and the larger the swimming ranges of organisms, the more pronounced the bio-dilution effect. The PFOA-equivalent HRs of category A and B fish were 3.48-5.17 and 2.59-4.01, respectively, indicating that mangrove estuarine residents had a high PFAS exposure risk through the intake of estuarine fish.


Assuntos
Bioacumulação , Monitoramento Ambiental , Estuários , Peixes , Cadeia Alimentar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes/metabolismo , Áreas Alagadas , Fluorocarbonos/análise , Fluorocarbonos/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38607491

RESUMO

The massive use of antibiotics has led to the escalation of microbial resistance in aquatic environment, resulting in an increasing concern regarding antibiotic resistance genes (ARGs), posing a serious threat to ecological safety and human health. In this study, surface water samples were collected at eight sampling sites along the Yangtze River Estuary. The seasonal and spatial distribution patterns of 10 antibiotics and target genes in two major classes (sulfonamides and tetracyclines) were analyzed. The findings indicated a high prevalence of sulfonamide and tetracycline resistance genes along the Yangtze River Estuary. Kruskal-Wallis analysis revealed significant seasonal variations in the abundance of all target genes. The accumulation of antibiotic resistance genes in the coastal area of the Yangtze River Estuary can be attributed to the influence of urban instream runoff and the discharge of effluents from wastewater treatment plants. ANISOM analysis indicated significant seasonal differences in the microbial community structure. VPA showed that environmental factors contribute the most to ARG variation. PLS-PM demonstrate that environmental factors and microbial communities pose direct effect to ARG variation. Analysis of driving factors influencing ARGs in this study may shed new insights into the mechanism of the maintenance and propagation of ARGs.

10.
Heliyon ; 10(7): e28796, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633655

RESUMO

Pollution characteristics, distribution, risk and sources of 7 heavy metals in sediments of Yangtze River Estuary were investigated. Total concentration ranges of As, Cr, Cu, Cd, Pb, Zn and Ni were [0, 16.5], [1.48, 51.3], [2.66, 318], [0, 0.99], [35.6, 992], [8, 91.3] and [1.88, 108] mg/kg, respectively. Based on the potential ecological risk index and Geoaccumulation index, it was determined that Pb is the most polluted heavy metal. According to class I standard of "Marine sediment quality" of China, mean baseline levels multiples were Pb (8.34) > Cu (0.57) > Cr (0.37) > Zn (0.355) > Ni (0.352) > As (0.28) > Cd (0.00). The study also found the heavy metal content of Pb is the most serious, but most of the Pb content comes from the residual state, which has minimal impact on the environment. The East Nanhui Shoal was identified as the most polluted sub-area in terms of Pb pollution, followed by other specific locations. Considering the pollution level and transport costs, the study concluded that dredge soils of the Yangtze River Estuary Deepwater Channel are not suitable for the restoration of East Hengsha Shoal.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38648002

RESUMO

Pollution from heavy metals in estuaries poses potential risks to the aquatic environment and public health. The complexity of the estuarine water environment limits the accurate understanding of its pollution prediction. Field observations were conducted at seven sampling sites along the Yangtze River Estuary (YRE) during summer, autumn, and winter 2021 to analyze the concentrations of seven heavy metals (As, Cd, Cr, Pb, Cu, Ni, Zn) in water and surface sediments. The order of heavy metal concentrations in water samples from highest to lowest was Zn > As > Cu > Ni > Cr > Pb > Cd, while that in surface sediments samples was Zn > Cr > As > Ni > Pb > Cu > Cd. Human health risk assessment of the heavy metals in water samples indicated a chronic and carcinogenic risk associated with As. The risks of heavy metals in surface sediments were evaluated using the geo-accumulation index (Igeo) and potential ecological risk index (RI). Among the seven heavy metals, As and Cd were highly polluted, with Cd being the main contributor to potential ecological risks. Principal component analysis (PCA) was employed to identify the sources of the different heavy metals, revealing that As originated primarily from anthropogenic emissions, while Cd was primarily from atmospheric deposition. To further analyze the influence of water quality indicators on heavy metal pollution, an artificial neural network (ANN) model was utilized. A modified model was proposed, incorporating biochemical parameters to predict the level of heavy metal pollution, achieving an accuracy of 95.1%. This accuracy was 22.5% higher than that of the traditional model and particularly effective in predicting the maximum 20% of values. Results in this paper highlight the pollution of As and Cd along the YRE, and the proposed model provides valuable information for estimating heavy metal pollution in estuarine water environments, facilitating pollution prevention efforts.

12.
Mar Environ Res ; 198: 106500, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626627

RESUMO

Microbial mediated nitrogen (N) transformation is subject to multiple controlling factors such as prevailing physical and chemical conditions, and little is known about these processes in sediments of wet-dry tropical macrotidal systems such as Darwin Harbour in North Australia. To understand key transformations, we assessed the association between the relative abundance of nitrogen cycling genes with trophic status, sediment partition and benthic nitrogen fluxes in Darwin Harbour. We analysed nitrogen cycling gene abundance using a functional gene microarray and quantitative PCRs targeting the denitrification gene (nosZ) and archaeal ammonia oxidation (AOA.1). We found a significant negative correlation between archaeal ammonia oxidation and silicate flux (P = 0.004), an indicator for diatom and benthic microalgal activity. It is suggested that the degradation of the diatomaceous organic matter generates localised anoxic conditions and inhibition of nitrification. Abundance of the nosZ gene was negatively correlated with nutrient load. The lowest nosZ gene levels were in hyper-eutrophic tidal creeks with anoxic conditions and increased levels of sulphide limiting the coupling of nitrification-denitrification (P = 0.016). Significantly higher levels of nosZ genes were measured in the surface (top 2 cm) compared to bulk sediment (top 10 cm) and there was a positive association with di-nitrogen flux (N2) in surface (P = 0.024) but not bulk sediment. This suggests that denitrifiers are most active in surficial sediment at the sediment-water interface. Elevated levels of nosZ genes also occurred in the sediments of tidal creek mouths and mudflats with these depositional zones combining the diffuse and seaward supply of nitrogen and carbon supporting denitrifiers. N-cycle molecular assays using surface sediments show promise as a rapid monitoring technique for impact assessment and measuring ecosystem function. This is particularly pertinent for tropical macrotidal systems where systematic monitoring is sparse and in many cases challenged by climatic extremes and remoteness.

13.
Sci Total Environ ; 927: 172344, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608891

RESUMO

Estuaries are vulnerable to oceanic and atmospheric climate change. Much of the research investigating climate change impacts on estuaries is focused on saltwater intrusion within surface water due to drought and rising sea levels, with implications for ecosystems and humans. Groundwater and soil near estuaries may also be influenced, as estuary salinity and hydraulic head changes can impact soils and aquifers not previously at risk of salinization. This study was conducted to address knowledge gaps related to present and future groundwater salinity distribution in a groundwater system connected to a macro-tidal estuary. The studied estuary experiences a tidal bore due to its hydraulic connection to the Bay of Fundy in Nova Scotia, Canada. A parcel of agricultural land adjacent to the estuary was selected to assess the groundwater response to episodic fluctuations in estuary water levels and salinity. Groundwater monitoring and electromagnetic surveys were conducted to map soil and groundwater salinity patterns. A numerical model of groundwater flow and solute transport informed by field data was used to investigate how varying estuary salinity due to droughts and sea-level rise could impact groundwater salinity. Results showed that, in contrast to salt wedges observed along marine coasts, the saline groundwater existed as a plume immediately around the estuary. Model simulations showed that short-term droughts had an insignificant impact on the adjacent groundwater salinity. However, permanent increases in salinity caused by sea-level rise increased the plume volume by 86 %, or an additional ∼11 m horizontally and âˆ¼ 4.5 m vertically. Our results suggest that increased river salinity in this setting would not result in widespread salinization of porewater and agricultural soils, but more extensive salinization may be experienced in permeable aquifers or along more saline estuarine zones. Findings may inform land management decisions in regions exposed to increased salinity in the future.

14.
Sci Total Environ ; 925: 171749, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494009

RESUMO

Historically, dissolved organic nitrogen (DON) has not been characterized in the nitrogen profiles of most estuaries despite its significant contribution to total nitrogen and projected increase in loading. The characterization of dissolved inorganic nitrogen (DIN) and DON processing from groundwater to surface water also remains unconstrained. This study attempts to fill in these knowledge gaps by quantifying the DON pool and potential sources in a semiarid, low inflow estuary (Baffin Bay, Texas) using stable isotope techniques. High NO3- and DON concentrations, and high δ15N-NH4+ (+55.0 ± 56.7 ‰), δ15N-NO3- (+23.9 ± 8.6 ‰) and δ15N-DON (+22.3 ± 6.5 ‰) were observed in groundwaters of a septic-influenced estuarine area, indicating coupled septic contamination and nitrification/denitrification. In contrast, groundwater of an undeveloped area provided evidence of inundation by bay water through high NH4+ concentrations and δ15N-NH4+ (+8.4 ± 3.0 ‰) resembling estuary porewater. NH4+ was the dominant nitrogen species in porewater of both areas and δ15N-NH4+ indicated production via organic nitrogen mineralization and dissimilatory nitrate reduction to ammonium. Surface water had similar nitrogen profiles (DON constituted ∼98 % of dissolved nitrogen pool) and potential source contributions, despite distinct nitrogen processing and profiles found in each water table. This was attributed to low nitrogen removal rates and prolonged mixing associated with long residence time. This study emphasizes the importance of DON in a low-inflow estuary and the isotopic approach to comprehensively examine both inorganic and organic N processing and sources serving as a guide to investigate N cycling in high DON estuaries globally.

15.
Sci Total Environ ; 924: 171473, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458462

RESUMO

Seasonal field surveys (April 2018 to February 2019) were conducted in a subterranean estuary (STE) seepage face in Sanggou Bay (China) aiming to explore the transport and reactivity of phosphorus (P) and biogeochemical linkages with the cycling of nitrogen (N) prior to discharge. Porewater dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) together with different fractions of sedimentary P were analyzed in the upper, middle and lower intertidal covering the top 20 cm of sediment (1-4 cm, 5-8 cm, 9-12 cm, 13-16 cm and 17-20 cm depth). The accumulation of sedimentary organic P stimulated the growth of phosphate-solubilizing microorganisms and led to porewater DOP enrichment during spring. During summer, total P (TP), porewater DIP and DOP concentrations decreased, potentially due to enhanced mineralization driven by high ambient temperature. From autumn to winter, pelagic organic matter into the STE lowered, triggering a drop of TP standing stocks. Compared with the significant seasonality, sedimentary P storage was statistically identical along the intertidal. Such spatial homogeneity likely results from the rebalance driven by P adsorption dynamics and pelagic organic matter delivered by tide and wave setup. The vertical distribution of DIP, DOP, and sedimentary TP were linked to nitrate transformations. In the sediment layer with active mineralization and nitrification, concentrations of DOP, sedimentary redox and clay P increased. In the layer with active nitrate removal (2-5 cm depth), both DIP and DOP concentrations decreased. The sedimentary loosely-bound and organic P were also lower there. Notably, a substantial quantity of soluble P seeped out, acting as an important contributor to the dissolved P pool of the receiving waters. The spatial and temporal overlap of high concentrations of N and P in STEs adds variabilities and uncertainties in P out-drainage fluxes and nutrient stoichiometry balances, which should draw attention from coastal researchers and stakeholders.

16.
Mar Pollut Bull ; 201: 116201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457876

RESUMO

The objective of this study is to assess the effect of petrochemical effluent on heavy metal pollutant in the Musa Estuary ecosystem in the North-western region of the Persian Gulf, through numerical modeling. The outfall of 30 petrochemical plants poses a potential threat to the estuary's seawater and sediment quality, environment, and public health. A combined hydrodynamic and ecologic modeling framework is applied to predict the spatial distribution of BOD and hazardous heavy metals in this estuary. MIKE 21 Flow Model (FM) CFD software is applied to simulate the tidal waves hydrodynamics, next to applying the MIKE ECO Lab models to predict the distribution of BOD and heavy metals in ambient water. The accuracy of the modeling framework is validated against measured water level, current speed, and water quality data. The results reveal that the level of lead concentration corresponds with the national standard, while the BOD, arsenic, molybdenum and vanadium exceed the limit in some areas, particularly in the tidal zone. The optimal outlet locations that effectively meet the standard concentrations of the heavy metals in the ambient water of the estuary are determined. The results confirm that the new outlet configuration corresponds with the standards: 0.198 µg/L for arsenic concentrations, 0.182 µg/L for molybdenum, 1.530 µg/L for vanadium, and 1.132 mg/L for BOD, at maximum. This study contributes to the perception of estuarine dynamics and provides practical implications for estuarine sustainable management and pollution control.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Molibdênio , Medição de Risco , Vanádio , Poluentes Químicos da Água/análise , Qualidade da Água
17.
Sci Total Environ ; 926: 171962, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537819

RESUMO

Estuaries are important components of the global carbon cycle; exchanging carbon between aquatic, atmospheric, and terrestrial environments, representing important loci for blue carbon storage and greenhouse gas emissions. However, how estuarine gradients affect sinking/suspended particles, and dissolved organic matter dynamic interactions remains unexplored. We fractionated suspended/sinking particles to assess and characterise carbon fate differences. We investigated bacterial colonisation (SYBR Green I) and exopolymer concentrations (TEP/CSP) with microscopy staining techniques. C/H/N and dry weight analysis identified particle composition differences. Meanwhile, nutrient and carbon analysis, and excitation and emission matrix evaluations with a subsequent parallel factor (PARAFAC) analysis characterised dissolved organic matter. The lack of clear salinity driven patterns in our study are presumably due to strong mixing forces and high particle heterogeneity along the estuary, with only density differences between suspended and sinking particles. Elbe estuary particles' organic portion is made up of marine-like (sinking) and terrestrial-like (suspended) signatures. Salinity did not have a significant role in microbial degradation and carbon composition, although brackish estuary portions were more biologically active. Indicative of increased degradation rates, leading to decreased greenhouse gas emissions, which are especially relevant for estuaries, with their disproportionate greenhouse gas emissions. Bacterial colonisation decreased seawards, indicative of decreased degradation, and shifts in microbial community composition and functions. Our findings span diverse strands of research, concerning steady carbon contributions from both marine and terrestrial sources, carbon aromaticity, humification index, and bioavailability. Their integration highlights the importance of the Elbe estuary as a model system, providing robust information for future policy decisions affecting dissolved and particulate matter dynamics within the Elbe Estuary.


Assuntos
Carbono , Gases de Efeito Estufa , Carbono/análise , Matéria Orgânica Dissolvida , Gases de Efeito Estufa/análise , Estuários , Material Particulado/análise , Rios
18.
Sci Total Environ ; 926: 172030, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547985

RESUMO

Anthropogenic Contaminants of Emerging Concern (CECs) in marine environments have raised significant concerns. Yet, analyses detailing their origins, fate, and environmental effects are limited. This study employs an integrated non-target screening methodology to elucidate CECs existence across 46 sampling sites in the Pearl River Estuary (PRE) of the South China Sea. Assisted by advanced liquid chromatography-high resolution mass spectrometry, we discovered 208 chemicals in six usage categories, with pesticides (33 %) and pharmaceuticals (29 %) predominating. Several CECs drew attention for their consistent detections, profound abundance, and significant ecotoxicities. The wide detection of them at offshore sites further implies that anthropogenic activities may contribute to large-scale contamination. Meanwhile, distinct distribution patterns of CECs across PRE are evident in semi-quantitative results, indicating regional anthropogenic influences. Identified transformation products may establish a novel and non-negligible negative contribution to ecology through elevated environmental toxicities, exemplified by HMMM and atrazine. Based on the ecological risks, we compiled a prioritized list of 21 CECs warranting intensified scrutiny. Our findings indicate the introduction of various CECs into the South China Sea via PRE, emphasizing the urgent necessity for ongoing surveillance of discharged CECs at estuary areas and assessment of their marine ecological consequences.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Rios/química , Estuários , Ecossistema , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , China
19.
Mar Pollut Bull ; 201: 116241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479325

RESUMO

Nutrients directly control the level of primary productivity and are crucial for the stability of marine ecosystems. Focusing on the survey results in August 2020 of the Yangtze River Estuary, this study elucidated the distribution characteristics and controlling factors of three nutrients: NO3-N, PO4-P, SiO3-Si. The results showed that the concentrations of NO3-N, PO4-P, SiO3-Si in the study area were generally higher near the shore than far shore, with average concentrations of 11.40, 0.70, and 23.73 µmol/L, respectively. The ocean currents drove the distribution of nutrients, and the transport of CDW and YSCC increased the nutrient levels. The resuspension of sediment caused by factors such as terrain and weather may lead to an abnormal increase in nutrients in the bottom waters. The main controlling factors of the three nutrients were different. NO3-N was significantly affected by human activities, PO4-P and SiO3-Si were mainly affected by natural factors.


Assuntos
Estuários , Rios , Humanos , Ecossistema , Estações do Ano , Nutrientes , China , Monitoramento Ambiental
20.
Mar Pollut Bull ; 201: 116251, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479324

RESUMO

The kleptoparasitic pea crab Zaops ostreum lives within the gills of bivalves, including the economically important eastern oyster Crassostrea virginica. Previous research along the east coast of central Florida has found an average of 2.3 pieces of plastic per oyster. The goals of our research were to determine if filter-feeding oysters transfer microfibers to Z. ostreum via the crab: 1) actively consuming plastic particles, or 2) passively becoming entangled in microfibers. Our results show that both occur. While only 11.6 % of Z. ostreum (total n = 122) consumed microfibers, those that did had up to 14 pieces in their soft tissues. Similarly, only 7.4 % of Z. ostreum had microfibers entangled around their appendages. Mean lengths of consumed and entangled fibers were similar, 1.9 and 2.7 mm, respectively. Additional research is needed to understand the positive and negative impacts of microfibers associated with pea crabs on both species.


Assuntos
Braquiúros , Crassostrea , Animais , Florida , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...